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Numerical investigation of the effects of classical phase space structure
on a quantum system with decoherence
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We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system
is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions
of the classical phase space. We investigate the diffusion of particles through a cantorus. A quantum analysis
confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the
cantorus per kick and relate this quantity to the behavior of the quantum system. We introduce decoherence via
environmental interactions with the quantum system and observe the subsequent increase in the transport of
quantum particles through the boundary.

PACS numbses): 05.45-a, 03.65.Bz, 42.50.Lc, 72.15.Rn

[. INTRODUCTION The link between the quantum domain and the familiar
classical world remains a hotly debated topic. The quantum-
Quantum chaos is an important field, comprising theclassical corresponden¢®CC) principle requires that quan-
study of the quantized versions of systems which are classtum mechanics contains the classical macroscopic limit. A
cally chaotic. The current consensus is that quantum systengsomising approach to the question of quantum-classical cor-
do not show sensitive dependence on initial conditions in theespondence is the study décoherence-the analysis of the
same way as classical systems. This would appear to digffect of coupling to the environment, which inevitably oc-
qualify them from being described as chaotic. However, claseurs in a real system, in terms of quantum coherdrdG
sical chaos is also apparent in other aspects of a systemi§e introduce increased environmental interactions into our
evolution, the quantum analogies of which are of great interquantum simulations in order to test the hypothesis that the
est. In particular, these include Kolmogorov-Arnold-Moserresulting behavior will more closely resemble the classical
(KAM) tori and cantori, the study of which is the focus of system.
this paper. Our group has previously published experimental The structure of this paper is as follows. In Sec. Il we
studies[1-3] of a particular, classically chaotic system con-introduce the specifically designed double-kicked rotor sys-
taining KAM tori and cantori, which is realized experimen- tem, and present the results of a classical analysis. In Sec. IlI
tally in the quantum regime, and simulated both classicallywe study the corresponding quantum behavior and analyze
and quantum mechanically. This paper concentrates on the properties of the system using the Floguet method. In
detailed results of our computer simulations. Sec. IV we introduce decoherence into the quantum system
KAM tori and cantori in a classical phase space are preby two different methods, and also generate Wigner func-
dicted to influence the corresponding quantum system. Ations in order to help understand the origin of classical be-
unbroken KAM boundary will prohibit classical diffusion havior from a quantum system. Finally a summary is con-
through it, while tunneling across the barrier is possible in a&ained in Sec. V. All the parameters used in our model were
quantum system. When interaction terms in the perturbinghosen so as to correspond with those used in our experi-
Hamiltonian are sufficiently large as to break up the boundments[1-3].
ary and create a cantorus tornstile, classical particles will
quickly diffuse through that cantorus but the quantum wave Il. CLASSICAL DOUBLE-KICKED ROTOR
function will be inhibited[4-6]. A heuristic model proposes
that with the presence of a perturbing Hamiltonian, quantum The original and most commonly studied system in quan-
diffusion is constrained when the classical phase space aréam chaos is thé-kicked rotor. The observation of dynami-
escaping through the cantorus each periog #5[6,7]. Even  cal localization in the atomic optics realization of the
though the barrier has been broken, the quantum wave fun@-kicked rotor[14—16 provided an important experimental
tion still appears to tunnel through the cantorus. Differentlink to the most studied system in Hamiltonian chaos. How-
processes can contribute to a quantum system’s inhibition tever, a periodic pulsed potential of finite time durati@s
diffusion. Dynamical localization eliminates momentum dif- used in thes-kicked rotor experimenjsproduces a KAM
fusion in the kicked rotof8,9]. Previous studies have ana- boundary, which becomes more noticeable for longer pulse
lyzed the transition from cantori localization to dynamical widths. If one wishes to study diffusion through a cantorus, a
localization [10]. Recent works have displayed dynamical train of single pulses is not the best system. The classical
localization and cantori inhibition to diffusion within a single phase space outside the first long-lived cantorus is not
system[11,17. strongly chaotic and contains many regular regions which
will inhibit particle diffusion. Hence we have studied the
dynamics due to a train of double pulses. This system has
*Electronic address: n.christensen@auckland.ac.nz been the subject of experimental investigation by our group
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FIG. 1. Double pulse showing definitions afandA.

in its atomic optics manifestatiofL—3]. Figure 1 displays

our double pulse train. We can write the dimensionless form

of the Hamiltonian as

[

Kcosg >, f(t—n),

n=-—o

2

H=73

D

where p is the dimensionless momentum conjugate to the

coordinate¢ and f(t) specifies the temporal shape of the
pulses.K is the dimensionless “kicking strength” which is
the single parameter varied in our investigation of the clas
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sical system. The double pulse train Hamiltonian can be FIG. 2. Poincare section for double-kicked rotor with= 70.

written as

©

-K 2 a,cog p—2mmr),

m=—o

2

p

H=73

)

where a,,= 15sinc(m/20) cos(na/10) [with the sinc func-

interfaced withvATLAB . With each kick, some area of phase
spacer is mapped from inside to outside the= = 107 can-

tori. For the parameters used in our study we have calculated
the flux per kick F to be 0, 0.4, 1.6, and 2.4 foK
=80, 180, 280, and 400, respectively.

tion defined as sin&() = sin(x)/x]. Each pulse is of widtla/2
and the leading edge separation of the two pulses is given by
A. The KAM boundaries ap=*10m and =30 corre-
spond to zero values fas anda;s.

As discussed in Refl], below a critical kicking strength

. QUANTUM-MOMENTUM DISTRIBUTIONS AND
FLOQUET STATES

For comparison with classical simulations, we use an ini-

K=K*, the phase space of the classical system containgal density matrix

KAM tori given approximately by the linep=* 10 for

our choice ofa=A=0.1. ForK>K* these break up to be-
come partially penetrable cantori. Figure 2 shows the phas¢
space forK=70. We observe chaotic seas on either side of
the cantorus arounpl=107. Figure 3 shows the phase space
for K=280. We have stronger chaos with little island struc-
ture remaining. The KAM torus aroung= 307 is still un-
broken for this kick strength, and we find that this is the case
for all kicking strengths studied in this paper. The strongly
chaotic seas surrounding the=107 cantorus provide an

ideal phase space structure for studying the transport of par &
S

ticles through the barrier.

The starting point for the calculation of the momentum
distributions is an initial distribution uniform inp, and
Gaussian imp. For our choserr andA we haveo,= 3.6
which gives 99.5% of initial conditions inside=|10x|. We
find that the results are not strongly dependent on initial
distribution, provided this proportion is close to 1. To obtain
numerical distributions, we choose®liditial conditions ran-
domly from this distribution, and propagate them through 70
kick cycles. Figure 4 shows examples of our simulated dis-
tributions. Once the KAM boundaries pt= = 107 are bro-
ken the classical particles will eventually distribute them-
selves uniformly between thg= =307 tori. In our

FIG. 3. Poincare section for double-kicked rotor wikh=280.

simulations, the elliptic integrals are efficiently evaluatedThe cantori ap= =107 are no longer visible in the phase space at

with a specialized algorithm coded m[17], which is then

this resolution.
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FIG. 4. Classical momentum distribution as a
function of number of kickg, for the standard
double-kicked system witta) K =80, (b)180, (c)
280, and(d) 400.

A 1 n2K2 classical after less than 20 kicks. This is consistent with the

<m|po|n>=Aexp( —2) mn 3 premise that the diffusion is suppressed when the phase
20, space flux across the cantorusi¥. This KAM localization
is distinct from the more widely studied dynamical localiza-

where 0,=3.6m, A is a normalization constant, aridis  tion [1].
Planck’s constant in our dimensionless system. Again the The time evolution operatdJ is unitary, so that its eigen-
results are not strongly dependent on the initial spread. Wealues are of the forna; =exp(—iE;/K) whereE; is a (di-
simulate the system dynamics for up to 70 kicks. Figure Smensionless quasi-energy. Its eigenstate&uasienergy
shows examples of these distributions, for the same kickingtatesor Floquet statessatisfy
strengths as were presented in the classical case, Kkvith
=2.6. Comparing this figure to its classical counterpart, we A
see that the quantum behavior deviates qualitatively from the Ulaj)=e"'5i N ;). 4

(a) (0)

FIG. 5. Quantum-momentum distribution as a
function of number of kicks, with (a) K=280, (b)
180, (c) 280, and(d) 400.
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In a basis made up of these states, the evolution operator i
diagonal. They are therefore equivalent to eigenstates of th
Hamiltonian in a time-independent system, and if we exam- 3o
ine the system only once per kicking cycle, they are effec-
tively stationary. If we are interested in the state of the sys- 10
tem after quantum saturation has occurred, we can examino_o
the asymptotiglong-time averagemomentum distribution, -10
which can be written

-30

N—1

1
P(nlpo)=lim &5 > (nlpin) (5
N— oo t=0
1 N—1
=lim < > (n|U'peU™n). (6)
N— oo N t=0

By inserting the spectral decompositionf(representation
in terms of the Flogquet statewe obtain[4,5]

P<n|p0>=$ (@l pol az)|(n|a;)|? (7)

and if our initial condition is a pure staig=|ny)(ny| we
have

-8

P(nlng)= 2 [(ng|a;)|?(n]ey)[2. (8 - = 2 o
, log, ,(P(PIP,))

This function characterizes the asymptotic mixing between
the two momentum states. We can generate pseudocolgr(mpo) for (a) K=80, (b) 180, (c) 280, and(d) 400, k=2.6.
plots ofP(n|n9), to obt_aln visual representations of the_mo- Computed using 128 states, upon whiglip|p,) is normalized
mentum confinement in the quantum system for particulag, |

choices ofK andk.

Figure 6 shows a series of these pseudocolor plots. We
have useck=2.6 andN=128, so thatk|n,,|>507. The
plots use a logarithmic color scale. Black and dark gray re- In order to study decoherence we consider the atomic op-
gions correspond to vanishingly small probability. Mid-gray tics manifestation of this double kicked systgéi-3]. A pe-
regions indicate a low probability, at the level of quantumriodic potential is created by two counterpropagating laser
tunneling. Pale gray and white regions have a sizeable prolheams, and atoms are subjected to a force due to the dipole
ability density. Inspection of the plots shows that their shapgotential. The dipole potential is derived by neglecting the
appears to be chiefly determined by the classical barriers texcited state amplitude of the atofh8,19. We will now
momentum diffusion. The light line along the line=p,  consider the first order effects arising from a small nonzero
arises from each state being mapped onto itself, to somamplitude. Rather than making coherent stimulated transi-
degree. Each plot also shows a central light square \gith  tions which is the usual interaction between the atoms and
and |po| less than 1@, indicating the strong coupling of the pulsed potential, an atom in the excited state may, with
each state in this range to all the others. Sharp borders on thiigite probability, decay to the ground state by spontaneous
square indicate strong confinement by the cantori. These boemission. We can treat this effect as a stochastic process,
ders blur as the cantori become less effective. For increasasghich is different for each realization. The effect of a spon-
kicking strength we eventually see a corresponding squarganeous emission event arises from the recoil momentum im-
associated with the KAM tori gv=*+30x. Figure @a) has  parted to the atom by both the photon exciting the atom and
K=80 and we see very strong signatures of the classicahe photon emitted by the atom. The atom recoils with a
barriers. Figure @) and(c) showK =180 andK =280, re- change inp of uk where —1<u<1 and u=3(*+1
spectively. We see significant penetration of five = 10 +cosp), where the upper and lower signs occur with equal
cantori, but their effect is still obvious. The= =307 KAM probability andg is the angle which the spontaneously emit-
tori still provide a very strong barrier. Figured hasK  ted photon makes with the axis. 8 is random, with a dis-
=400. The effects of the= =107 cantori have almost dis- tribution which is a sum of dipole distributions over the set
appeared, but penetration through ghe = 307 KAM tori is of possible atomic orientations. To a fairly good approxima-
still fairly small. tion [15], u can be treated as uniformly distributed between

FIG. 6. Pseudocolor plot of asymptotic momentum distribution

IV. DECOHERENCE VIA SPONTANEOUS EMISSION
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FIG. 7. Quantum-momentum distribution as a
function of number of kickg with »=2% (a)
K =80, (b) 180, (c) 280, and(d) 400.
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—1 and 1. We definey to be the probability per kicking B. Momentum distributions

cycle that the atom undergoes spontaneous emission. Figures 7 and 8 show momentum distributions versus

number of kicks for the quantum double-kicked rotor, with
A. Density-matrix calculations spontaneous emission effects included. Figuta@ &hows

To include spontaneous emission in our density-ma’[rixsbeh"’“/ior fork =80 and»=29%. Comparing this to Figure
calculations, we use the following approximate technique: (@), any broadening of the distributions due to the sponta-

For a particular run we choose a probability per kicking neous emission Is not obwqus. However the_ s_p_lky nature
cycle 5 that a particular atom will spontaneously emit. ©f the puré guantum version has been significantly sup-
Equivalently 7 is the proportion of the atoms in the en- Pressed. Figure (8 has the same kicking strength and
semble represented by the density matrix which will sponta==>%- Here we still see little broadening but even stronger
neously emit in each cycle. We then discretigeso thatu ~ SuPPression of the quantum peaks. Figu(®),7with K

= +1 with equal probability. Therefore the recoil of an atom =180 and7=2%, again shows similarity to the pure quan-

in state|n) will leave it in stateln—1) or [n+1). These tum case, except for some suppression of peaks and slight
states are representable by the density matrix, unlike thod&roadening. Figure (8) hasK=180 and7=5%. We now
arising from continuousl. Once per kick, the following re- See unmistakable movement of probability into the wings of

placement is made: the distribution, qualitatively resembling that in the classical
system forkK =180, in Fig. 4b), although not as strong. Fig-
(m|p|ny—2n((m+1|p|n+1)+(m—1|p|n—1)) ure 7c) hask =280 andy=2%. There is much more flow

A of probability through the cantori than in the pure quantum

+(1—n){m|p|n), (99  case in Fig. B), although the spikiness of the distribution is

still strikingly different from the classical case in Fig(b4.
where we anplv periodic boundary conditions For »=5% in Fig. §c), the distributions might be consid-
PPy p y ' . _ered to look more classical than quantum, although the rate
We have also performed Monte Carlo wave functlonof transport through the boundary does not match the classi-

simulations which are more realistic but considerably more_ ;" . <o Finally folk =400, we again sefFigs. 7d) and

:!me condsfuplbnq[: In p?rtlcul_i':\r they ta;kg wg;a?ccotgnt thec(;cm'S(d)] a significant increase in the probability flow due to
Inuous distribution of recoll momenta in Irection, an spontaneous emission, accompanied by distribution shapes

ghe.factththlat spic(J.ntkarll?rt])us e".‘l'ff"’r; can cz[ccur at any t'. hich qualitatively resemble classical behavior except for a
uring the laser kick. The recoil due to spontaneous emissiop) b <o e of transport.

is continuous between k andk, and alters the “ladder” on
which coherent dynamics occur for the particular atom. The
approximate way in which we account for spontaneous emis-
sion in our density matrix calculation produces results which A convenient way to visualize the information repre-
are negligibly different from the Monte Carlo wave function sented by the density matrix is in the form of a Wigner
calculation, but are significantly more computationally effi- function. For a discrete, truncated basis we use the toroidal
cient. Wigner function as defined in R€f20],

C. Wigner functions
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FIG. 8. Quantum-momentum distribution as a
function of number of kicks with »=5% (a)
K =80, (b) 180, (c) 280, and(d) 400.

2N-1 w]k T+ (=) 14| ]1—j cal barriers. It has a complicated folded shape with some
W(X,Py,t E ex ) < P > sharp spikes. In Fig. 10 we introduce spontaneous emission
N 2 2 | 2 with rate =5%. The Wigner function is qualitatively simi-

(10 lar, but close comparison shows that it has become some-
what smoother, with the contrast between peaks and troughs
whereP,= (k/2)I andX,= wk/N. This gives a Wigner func- being reduced. In Fig. 11 we hawe=180 and7=0. The
tion defined on a R 2N grid. Averaging over cells of four \vigner function “spills” over the classical barriers, al-
adjacent points we reduce the gridNo<N. This was imple-  though the total probability outside is small. We chiefly no-
mented iNMATLAB using a fast Fourier transform algorithm. tice that the Wigner function is now much more complicated
Figures 9 through 16 show a series of three-dimensiongh shape, varying rapidly in position and momentum. There
graphs of Wigner functions. Each function represents thare significant negative peaks present. The addition of spon-
state of the quantum double-kicked system after 20 kickstaneous emission in Fig. 12 again serves to suppress this
with the same initial condition as for our other simulations.variation. It is not obvious from inspection of these graphs,
Figure 9 hasKk =80 and no spontaneous emission. We sedut the cantori localization is also destroyed to some degree
that the Wigner function is strongly contained by the classi-by finite 7.

x 10

FIG. 9. Wigner function after 20 kicks with
K =80 and no spontaneous emission.
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FIG. 10. Wigner function after 20 kicks with
K=80 andn=5%.

In Fig. 13, withK=280 and»=0, we again see an in- positive. We can argue that the Wigner functions of states of
crease in the complexity of the Wigner function. At this particularly quantum character will exhibit this nonpositivity
kicking strength, the effect of the KAM tori aroungd= strongly. The normalization of our discrete Wigner function
+ 307 has become apparent. The introduction of spontaneis
ous emission in Fig. 14 again serves to smooth this variation
somewhat, while pushing morguas) probability into the N
wings of the function. Finally we examin€=400. For the > W(y.p)=1 (11
situation without spontaneous emissigig. 15 the function k=1
is again very complicated and noisy looking in shape. The
main visible change with increased kicking strength is thebut due to nonpositivity
increase in the function near to the= =307 boundaries.

Introduction of spontaneous emissidRig. 16 again sup- N
presses the rapid variation to some extent. > W(ey,p)|=1. (12
In the limit of small kK we expect that the Wigner k=1

pseudoprobability distribution will tend to a classical prob-
ability distribution. The Wigner function itself cannot be in- We would like to quantify the “nonclassicality” of a given
terpreted as a probability distribution because it is not alwaystate with a single positive number. A possible choice is

FIG. 11. Wigner function after 20 kicks with
K=180 andn=0.




1306 G. BALL, K. VANT, AND N. CHRISTENSEN PRE 61

x 10

FIG. 12. Wigner function after 20 kicks with
K=180 andn=5%.

N tem after 20 kicks, for several kicking strengthsand spon-
— — taneous emission rateg=0,, 2 and 5 %.
8= 2 [IW(i.p)l~W(p)]=0. (13 ’

D. Decoherence versus heating

An atom which undergoes spontaneous emission receives
a random momentum kick. This will obviously lead to an

We refer to S as “quantum Strangeness_” In th|s paper, Wéncrease in the W|dth Of the momentum distribution, the net
will not analyze this quantity in any detail. However, for €ffect being some incoherent absorption of energy from the
example, a mixed state consisting of two Gaussian wavéSer beams. This effect is referred to as “heating.” This,
packets centered aty(p)=(0,* 16k) hasS=0.1765, while however, is not the main physical mechanism behind the
for a superposition state with equally weighted component#}clr:?a:e(iggfu:r'%n &%)Oevzegvﬁoauih? zggﬂitggglog%ﬁgfns'on'
of the two wave packetS=0.7647. For the initial state we gs. .
use for our simulation§=0. In general the larger the value throughp= 10 over the pure quantum case, for several

. .~ kicking strengths and two values of spontaneous emission
of S the more nonclassical the character of the state. Figur:

: te ». We note that the contribution of heating to the cross-
17 shows this parameter calculated for the state of our sys; i J

g of this boundary will be strongest when the momentum

FIG. 13. Wigner function after 20 kicks with
K=280 andn=0.
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x 10

FIG. 14. Wigner function after 20 kicks with
K =280 andnp=5%.

distribution is steep negr=*+ 10s. If the broadening effect E. Measurement decoherence, or the anti-Zeno effect
was due entirely to heating it should be most pronounced for o
the smaller kicking strength$ where the pure quantum dis-  Our model for spontaneous emission leads to decoherence

tribution is strongly localized by the cantori, and for fixed ~ which we can consider to be “environmentally induced.”
should not increase with increasing Figure 18a) shows Kaulakys and Gonti§22] discuss the effect of projective
that the additional diffusion caused by spontaneous emissiomomentum measurements on the dynamics of the quantum
rate n=29% is much larger aK =180, 280, and 400, than at §-kicked rotor. They find that if a momentum measurement
K=80. Figure 18) shows the same trend fon=5%. is made after every kick, then quantum localization is com-
There must therefore be another mechanism which increasggetely destroyed, and unbounded diffusion occurs, with the
the diffusion rate, and which is much stronger than the heatsame diffusion constant as in the classical system. They refer
ing mechanism foK=180. This mechanism is the destruc- to this modification of the dynamics as anti-Zeno effect

tion of quantum coherence, or decoherence, caused by thleach measurement corresponds to the diagonalization of the
randomizing effect of spontaneous emission. We have alsdensity matrix in the momentum representatig®., off-
experimentally verified that heating is negligible fé&t  diagonal elements become zgror equivalently, the loss of
>150[21]. all information about position. This effect is formulated

FIG. 15. Wigner function after 20 kicks with
K=400 andn=0.
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x 10

FIG. 16. Wigner function after 20 kicks with
K=400 andn=5%.

p/n o/
without appealing to a collapse of the wave-function, and F. Comparison of quantum and classical results
can in principle be produced experimentally. To compare our quantum and classical results, we calcu-

We perform a similar simulation for our system to com- |ate the probability for a particle to cross the= + 10 can-

pare this form of decoherence to the spontaneous-emissia8ri, P(|p|>10mw,t), for classical, pure quantum, spontane-
induced decoherence and to the classical motion. Comput@us emission, and anti-Zeno simulations of the system.
tionally this is very similar to the density-matrix Figure 19a) hasK=380. Classical and pure quantum simu-
spontaneous-emission simulations. After each double-kickations give essentially horizontal lines with some fluctua-
coherent cycle, the density matrix is replaced by a matrixion, because the KAM tori present at this kicking strength
with the same diagonal entries, but all zero off-diagonal enare effective barriers for both systems. The initial conditions
tries. The cycle then repeats. We note that the Wigner funcdétermine the level of this line. The quantum simulations
tions for states generated by this type of simulation are veryith spontaneous emission show a gradual leakage and the
simple, being the product of a uniform position distribution dUantum anti-Zeno simulation gives a qualitatively similar

and the momentum distribution. We therefore do not shov&esu“' This suggests that, at this kicking strength, decoher-

them, but point out that the “quantum strangeness” param—gtr;geinbrteﬁgsco(:g’;n Ot:gegggrgg&e(;n:ﬁ;usufﬁﬁﬁa:ﬁﬁ;'clas_
eterSis always zero for these functions. ying P q

sical systems.

0.5 T T T T T T T
[ ] o 0 [ J
0451 | * * 2% -
¢ ¢ 5%
0.4 .
035 b
03 b
® FIG. 17. *“Quantum strangeness” S
025 b \M/, \AJ :
« . =51, [IW( b, p)| —W(db,p)] versus kick-
ok ) ing strengthK for spontaneous emission rates
’ =0, 2%, 5% as indicated in the legend.
0.15F * b
01 1
[ ]
.
0.05| * .
%*
.
o a 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450

K
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04 I-/'j’ FIG. 19. Comparison of classical and quantum simulations with
P ™ . .
A /’ (a) K=80, (b) 180, (c) 280, and(d) 400. Probability of finding a
0.05 YA given atom outsidg= =107 is plotted versus number of kicks
I.'/ ’ PR Coherent quantum evolutioflight solid line), quantum evolution
et with spontaneous emission rates=2% (dashed ling and 5%
0 10 20 30 40 50 60 70 (dash-dotted ling respectively. Quantum simulation with anti-Zeno
t effect (dotted ling. Classical simulatiortheavy solid ling.

FIG. 18. (a) Relative effect of spontaneous emission rate classical. The close correspondence between the anti-Zeno
=2% for different kicking strength& =80 (solid), 180 (dotted,  and classical simulations for this and the previous figure can
280 (dashed, and 400(dot-dashell Proportion of atoms outside pe related to the fact that for these kicking strengths the size
p=*10m for quantum simulations witly=0 and7=2% sponta-  of the classical phase space flux through the cantorus per
neous emission are calculated and the difference is plott®d. Lick has become comparable to our dimensionless Planck’s
Same aga) but with =5%. constantk=2.6.

Our group has previously published experimental results

In Fig 19b), we present simulations fa¢=180. There is for K=280[2]. These show good agreement with the spon-
now a clear difference between the classical and quanturianeous emission simulations, especially the Monte Carlo
simulations. In fact they appear to differ even for very smallruns. With the elimination of some systematic experimental
t, where the quantum curve initially rises more sharply tharerrors we expect that still better agreement would be
the classical, before saturation sets in. Adding spontaneowschieved.
emission destroys the saturation, and forl0 causes the Figure 19 demonstrates that, as we have seen, when
guantum system to qualitatively more closely resemble the=0, quantum saturation sets in lty=20 over our entire
classical. The anti-Zeno simulation, however, suggests thaange of kicking strengths. If we examine tiye=0 results
the limit of large decoherence is agdastertransport across we see that the quantum strangengds very small forK
the cantori than in the classical case. We note that this simu=80, but rapidly increases with increasing kicking strength.
lation does not involve heating effects, so the transport mush general, we expect to s&increase with the chaoticity of
be due to decoherence. the corresponding classical system. Classical systems with

Now shifting our attention td& =280, in Fig. 19c), we  strong chaos rapidly develop phase space structure on all
see a large difference between classical and pure quantustcales, which cannot be reproduced in a quantum system
behavior which appears to be bridged by the introduction ofvith finite k, so the quantum system must begin to exhibit
spontaneous emission. The anti-Zeno calculation nowonclassical features. It is interesting here that wiken
closely corresponds to the classical picture, and we conclude 80, Sis almost negligible, which seems to correspond to
that at this kicking strength decoherence does make ththe fact that the classical and quantum systems are both
quantum system “more classical.” strongly localized by the KAM tori in the classical system.

Finally we consideK =400 in Fig. 19d). The pure quan- As K increases, the small scale phase space structure making
tum case is not as far from the classical behavior afor up the cantori must differ in the classical and quantum sys-
=280, but again decoherence is effective in increasing théems, and we see th&trises quickly withK in this regime.
similarity between the systems. The anti-Zeno calculatiorExamining the effects of introducing spontaneous emission,
now gives results that are almost indistinguishable from thave see thatS is significantly reduced even by a ratg
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=2%. Along with the “more classical” diffusion seen in because the quantum break time becomes infinite only loga-
Fig. 19, we can see that the Wigner function also exhibitgithmically, and can be surprisingly short for a real macro-
more “classicality” when we introduce environmental deco- scopic system. After this time arbitrary quantum superposi-
herence. tions may arise.
We have observed the effects of decoherence on our
V. DISCUSSION gquantum system, using two models; dissipation by spontane-
ous emission caused by the kicking laser beam, and the anti-

We have analyzed and numerically simulated the classicateno effect. Where the classical flux per kick through the
double-kicked rotor system and verified that it possessegantorus is finite, decoherence disrupts quantum saturation
KAM tori and cantori which present barriers to diffusion. We anq the system is qualitatively more similar to the classical
have established the success of a simple diffusion model fgjersion. Examination of the Wigner function also indicates
the system and used it to estimate the phase space flux p@fat quantum interference effects are suppressed by the de-
kick through a cantorus as a function of kicking strength.conerence. The anti-Zeno calculations are a kind of extreme
The double-kicked rotor is an interesting chaotic systemgecoherence limit, and we have seen that they reproduce the
which would reward further analysis. One aspect would b&;|zssical dynamics accurately, provided tikats not too
locating periodic trajectories of the system, especially thgarge compared to the classical flux per kick. It appears not
series of these trajectories converging to the noble KAMynreasonable to suppose that this correspondence continues
torus or cantorus. - indefinitely.

The quantum double-kicked system shows strong local- There are numerous aspects of decoherence in this system
ization corresponding to classical KAM tori. The system isyhich could be further investigated. The introduction of
also localized by classicatantori and does not show the gise into the kicking of the system is expected to have a
sharp transition shown classically. Whereas the classical Sygimilar effect to that of dissipation through spontaneous
tem eventually reaches a uniform distribution in phase spacemission[24]. Particular states of the system will be “resis-
the quantum system saturates with probability still signifi-tant” to decoherence. These are expected to be the “classi-
cantly confined by the classical barriers. This saturation igq|” states in the limit of strong decoherence and sriall
confirmed by a Floguet analysis of asymptotic momentumye would like to determine some of these states and quan-
distributions. The effect is still obvious even when the size ofify the “decoherence times” for other states, for compari-
the classical flux per kick becomes of the order of our di-son with the quantum break time of the coherent system. It
mensionless Planck’s constat In addition to the satura- \yould be interesting to quantitatively compare the anti-Zeno
tion, we observe fluctuating peaks in the momentum distriwffect with decoherence via noise and dissipation.
butions, which contrast strongly to the flat-topped — our results support the idea that the apparently classical
distributions seen classically. The quantum transport througRature of the universe arises entirely from quantum mechan-
the classical boundary more closely resembles the classicgls. |n the real world the unpredictable behavior of chaotic
situation as the kicking strength increases, but examinatiogystems must ultimately arise from quantum uncertainty. As
of the Wigner functions shows that the system becomes  f,rther progress is made in the investigation of decoherence,
nonclassical. This is consistent with the general theory ofhere is hope that physics will develop a consistent picture of

quantum chaos which suggests that stronger chaos in thesmooth transition between quantum and classical descrip-
classical system accelerates the appearance of quantum Ggss of reality.

herence effectfl5,20,23.

The modern theory of environmental decoherence states
that the interaction of quantum systems with the environment
is a necessary condition for the appearance of classical be- This work was supported by the University of Auckland
havior in real systems. The traditional semiclassical limit,Research Committee and the Royal Society of New Zealand
which in our formulation is given b%—0, is unsatisfactory Marsden Fund.
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