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Numerical investigation of the effects of classical phase space structure
on a quantum system with decoherence

G. Ball, K. Vant, and N. Christensen*
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 17 May 1999!

We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system
is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions
of the classical phase space. We investigate the diffusion of particles through a cantorus. A quantum analysis
confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the
cantorus per kick and relate this quantity to the behavior of the quantum system. We introduce decoherence via
environmental interactions with the quantum system and observe the subsequent increase in the transport of
quantum particles through the boundary.

PACS number~s!: 05.45.2a, 03.65.Bz, 42.50.Lc, 72.15.Rn
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I. INTRODUCTION

Quantum chaos is an important field, comprising t
study of the quantized versions of systems which are cla
cally chaotic. The current consensus is that quantum syst
do not show sensitive dependence on initial conditions in
same way as classical systems. This would appear to
qualify them from being described as chaotic. However, c
sical chaos is also apparent in other aspects of a syst
evolution, the quantum analogies of which are of great in
est. In particular, these include Kolmogorov-Arnold-Mos
~KAM ! tori and cantori, the study of which is the focus
this paper. Our group has previously published experime
studies@1–3# of a particular, classically chaotic system co
taining KAM tori and cantori, which is realized experime
tally in the quantum regime, and simulated both classica
and quantum mechanically. This paper concentrates on
detailed results of our computer simulations.

KAM tori and cantori in a classical phase space are p
dicted to influence the corresponding quantum system.
unbroken KAM boundary will prohibit classical diffusio
through it, while tunneling across the barrier is possible i
quantum system. When interaction terms in the perturb
Hamiltonian are sufficiently large as to break up the bou
ary and create a cantorus orturnstile, classical particles will
quickly diffuse through that cantorus but the quantum wa
function will be inhibited@4–6#. A heuristic model propose
that with the presence of a perturbing Hamiltonian, quant
diffusion is constrained when the classical phase space
escaping through the cantorus each period is;\ @6,7#. Even
though the barrier has been broken, the quantum wave f
tion still appears to tunnel through the cantorus. Differe
processes can contribute to a quantum system’s inhibitio
diffusion. Dynamical localization eliminates momentum d
fusion in the kicked rotor@8,9#. Previous studies have ana
lyzed the transition from cantori localization to dynamic
localization @10#. Recent works have displayed dynamic
localization and cantori inhibition to diffusion within a sing
system@11,12#.

*Electronic address: n.christensen@auckland.ac.nz
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The link between the quantum domain and the famil
classical world remains a hotly debated topic. The quantu
classical correspondence~QCC! principle requires that quan
tum mechanics contains the classical macroscopic limit
promising approach to the question of quantum-classical
respondence is the study ofdecoherence—the analysis of the
effect of coupling to the environment, which inevitably o
curs in a real system, in terms of quantum coherence@13#.
We introduce increased environmental interactions into
quantum simulations in order to test the hypothesis that
resulting behavior will more closely resemble the classi
system.

The structure of this paper is as follows. In Sec. II w
introduce the specifically designed double-kicked rotor s
tem, and present the results of a classical analysis. In Sec
we study the corresponding quantum behavior and ana
the properties of the system using the Floquet method
Sec. IV we introduce decoherence into the quantum sys
by two different methods, and also generate Wigner fu
tions in order to help understand the origin of classical
havior from a quantum system. Finally a summary is co
tained in Sec. V. All the parameters used in our model w
chosen so as to correspond with those used in our exp
ments@1–3#.

II. CLASSICAL DOUBLE-KICKED ROTOR

The original and most commonly studied system in qu
tum chaos is thed-kicked rotor. The observation of dynam
cal localization in the atomic optics realization of th
d-kicked rotor@14–16# provided an important experimenta
link to the most studied system in Hamiltonian chaos. Ho
ever, a periodic pulsed potential of finite time duration~as
used in thed-kicked rotor experiments! produces a KAM
boundary, which becomes more noticeable for longer pu
widths. If one wishes to study diffusion through a cantorus
train of single pulses is not the best system. The class
phase space outside the first long-lived cantorus is
strongly chaotic and contains many regular regions wh
will inhibit particle diffusion. Hence we have studied th
dynamics due to a train of double pulses. This system
been the subject of experimental investigation by our gro
1299 ©2000 The American Physical Society
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in its atomic optics manifestation@1–3#. Figure 1 displays
our double pulse train. We can write the dimensionless fo
of the Hamiltonian as

H5
p2

2
2K cosf (

n52`

`

f ~ t2n!, ~1!

where p is the dimensionless momentum conjugate to
coordinatef and f (t) specifies the temporal shape of th
pulses.K is the dimensionless ‘‘kicking strength’’ which i
the single parameter varied in our investigation of the cl
sical system. The double pulse train Hamiltonian can
written as

H5
p2

2
2K (

m52`

`

amcos~f22pmt!, ~2!

where am5 1
10 sinc(mp/20)cos(mp/10) @with the sinc func-

tion defined as sinc(x)5sin(x)/x#. Each pulse is of widtha/2
and the leading edge separation of the two pulses is give
D. The KAM boundaries atp5610p and 630p corre-
spond to zero values fora5 anda15.

As discussed in Ref.@1#, below a critical kicking strength
K5K* , the phase space of the classical system cont
KAM tori given approximately by the linesp5610p for
our choice ofa5D50.1. ForK.K* these break up to be
come partially penetrable cantori. Figure 2 shows the ph
space forK570. We observe chaotic seas on either side
the cantorus aroundp510p. Figure 3 shows the phase spa
for K5280. We have stronger chaos with little island stru
ture remaining. The KAM torus aroundp530p is still un-
broken for this kick strength, and we find that this is the ca
for all kicking strengths studied in this paper. The strong
chaotic seas surrounding thep510p cantorus provide an
ideal phase space structure for studying the transport of
ticles through the barrier.

The starting point for the calculation of the momentu
distributions is an initial distribution uniform inf, and
Gaussian inp. For our chosena andD we havesp53.6p
which gives 99.5% of initial conditions insidep5u10pu. We
find that the results are not strongly dependent on ini
distribution, provided this proportion is close to 1. To obta
numerical distributions, we choose 105 initial conditions ran-
domly from this distribution, and propagate them through
kick cycles. Figure 4 shows examples of our simulated d
tributions. Once the KAM boundaries atp5610p are bro-
ken the classical particles will eventually distribute the
selves uniformly between thep5630p tori. In our
simulations, the elliptic integrals are efficiently evaluat
with a specialized algorithm coded inC @17#, which is then

FIG. 1. Double pulse showing definitions ofa andD.
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interfaced withMATLAB . With each kick, some area of phas
spaceF is mapped from inside to outside ther5610p can-
tori. For the parameters used in our study we have calcula
the flux per kick F to be 0, 0.4, 1.6, and 2.4 forK
580, 180, 280, and 400, respectively.

III. QUANTUM-MOMENTUM DISTRIBUTIONS AND
FLOQUET STATES

For comparison with classical simulations, we use an
tial density matrix

FIG. 2. Poincare section for double-kicked rotor withK570.

FIG. 3. Poincare section for double-kicked rotor withK5280.
The cantori atp5610p are no longer visible in the phase space
this resolution.
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FIG. 4. Classical momentum distribution as
function of number of kickst, for the standard
double-kicked system with~a! K580, ~b!180, ~c!
280, and~d! 400.
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^mur̂0un&5
1

A
expS 2

n2k” 2

2sp
2 D dm,n , ~3!

where sp53.6p, A is a normalization constant, andk” is
Planck’s constant in our dimensionless system. Again
results are not strongly dependent on the initial spread.
simulate the system dynamics for up to 70 kicks. Figure
shows examples of these distributions, for the same kick
strengths as were presented in the classical case, wik”
52.6. Comparing this figure to its classical counterpart,
see that the quantum behavior deviates qualitatively from
e
e

5
g

e
e

classical after less than 20 kicks. This is consistent with
premise that the diffusion is suppressed when the ph
space flux across the cantorus is&k” . This KAM localization
is distinct from the more widely studied dynamical localiz
tion @1#.

The time evolution operatorU is unitary, so that its eigen
values are of the forma j5exp(2iEj /k”) whereEj is a ~di-
mensionless! quasi-energy. Its eigenstates~quasienergy
statesor Floquet states! satisfy

Uua j&5e2 iE j /k” ua j&. ~4!
a
FIG. 5. Quantum-momentum distribution as
function of number of kickst, with ~a! K580, ~b!
180, ~c! 280, and~d! 400.



or
t
m

ec
ys

i

e
o
o-
la

W

re
ay
m
ro
p
s

m

f
t

bo
s
a

ic

-

op-

ser
ipole
he

ero
nsi-
and
ith

ous
ess,
n-
im-

and
a

al
it-

et
a-
en

on

1302 PRE 61G. BALL, K. VANT, AND N. CHRISTENSEN
In a basis made up of these states, the evolution operat
diagonal. They are therefore equivalent to eigenstates of
Hamiltonian in a time-independent system, and if we exa
ine the system only once per kicking cycle, they are eff
tively stationary. If we are interested in the state of the s
tem after quantum saturation has occurred, we can exam
the asymptotic~long-time average! momentum distribution,
which can be written

P~nur0!5 lim
N→`

1

N (
t50

N21

^nur tun& ~5!

5 lim
N→`

1

N (
t50

N21

^nuUtr0U†tun&. ~6!

By inserting the spectral decomposition ofU ~representation
in terms of the Floquet states! we obtain@4,5#

P~nur0!5(
j

^a j ur̂0uaJ&u^nua j&u2 ~7!

and if our initial condition is a pure stater̂05un0&^n0u we
have

P~nun0!5(
j

u^n0ua j&u2u^nua j&u2. ~8!

This function characterizes the asymptotic mixing betwe
the two momentum states. We can generate pseudoc
plots of P(nun0), to obtain visual representations of the m
mentum confinement in the quantum system for particu
choices ofK andk” .

Figure 6 shows a series of these pseudocolor plots.
have usedk”52.6 andN5128, so thatk” unmaxu.50p. The
plots use a logarithmic color scale. Black and dark gray
gions correspond to vanishingly small probability. Mid-gr
regions indicate a low probability, at the level of quantu
tunneling. Pale gray and white regions have a sizeable p
ability density. Inspection of the plots shows that their sha
appears to be chiefly determined by the classical barrier
momentum diffusion. The light line along the linep5p0
arises from each state being mapped onto itself, to so
degree. Each plot also shows a central light square withupu
and up0u less than 10p, indicating the strong coupling o
each state in this range to all the others. Sharp borders on
square indicate strong confinement by the cantori. These
ders blur as the cantori become less effective. For increa
kicking strength we eventually see a corresponding squ
associated with the KAM tori atp5630p. Figure 6~a! has
K580 and we see very strong signatures of the class
barriers. Figure 6~b! and ~c! showK5180 andK5280, re-
spectively. We see significant penetration of thep5610p
cantori, but their effect is still obvious. Thep5630p KAM
tori still provide a very strong barrier. Figure 6~d! has K
5400. The effects of thep5610p cantori have almost dis
appeared, but penetration through thep5630p KAM tori is
still fairly small.
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IV. DECOHERENCE VIA SPONTANEOUS EMISSION

In order to study decoherence we consider the atomic
tics manifestation of this double kicked system@1–3#. A pe-
riodic potential is created by two counterpropagating la
beams, and atoms are subjected to a force due to the d
potential. The dipole potential is derived by neglecting t
excited state amplitude of the atom@18,19#. We will now
consider the first order effects arising from a small nonz
amplitude. Rather than making coherent stimulated tra
tions which is the usual interaction between the atoms
the pulsed potential, an atom in the excited state may, w
finite probability, decay to the ground state by spontane
emission. We can treat this effect as a stochastic proc
which is different for each realization. The effect of a spo
taneous emission event arises from the recoil momentum
parted to the atom by both the photon exciting the atom
the photon emitted by the atom. The atom recoils with
change in p of uk” where 21<u<1 and u5 1

2 (61
1cosb), where the upper and lower signs occur with equ
probability andb is the angle which the spontaneously em
ted photon makes with thex axis. b is random, with a dis-
tribution which is a sum of dipole distributions over the s
of possible atomic orientations. To a fairly good approxim
tion @15#, u can be treated as uniformly distributed betwe

FIG. 6. Pseudocolor plot of asymptotic momentum distributi
P(pup0) for ~a! K580, ~b! 180, ~c! 280, and~d! 400, k”52.6.
Computed using 128 states, upon whichP(pup0) is normalized
to 1.
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FIG. 7. Quantum-momentum distribution as
function of number of kickst with h52% ~a!
K580, ~b! 180, ~c! 280, and~d! 400.
tri
ue
ng
it.
-
ta

m

o

on
or
on

tim
sio

h
i

ic
n
fi-

us
th

ta-
re
up-

er

n-
light

of
al

-

m
is

-
rate
ssi-

to
pes

r a

e-
er
idal
21 and 1. We defineh to be the probability per kicking
cycle that the atom undergoes spontaneous emission.

A. Density-matrix calculations

To include spontaneous emission in our density-ma
calculations, we use the following approximate techniq
For a particular run we choose a probability per kicki
cycle h that a particular atom will spontaneously em
Equivalently h is the proportion of the atoms in the en
semble represented by the density matrix which will spon
neously emit in each cycle. We then discretizeu, so thatu
561 with equal probability. Therefore the recoil of an ato
in state un& will leave it in stateun21& or un11&. These
states are representable by the density matrix, unlike th
arising from continuousu. Once per kick, the following re-
placement is made:

^mur̂un&← 1
2 h~^m11ur̂un11&1^m21ur̂un21&!

1~12h!^mur̂un&, ~9!

where we apply periodic boundary conditions.
We have also performed Monte Carlo wave functi

simulations which are more realistic but considerably m
time consuming. In particular they take into account the c
tinuous distribution of recoil momenta in thex direction, and
the fact that spontaneous emission can occur at any
during the laser kick. The recoil due to spontaneous emis
is continuous between2k” andk” , and alters the ‘‘ladder’’ on
which coherent dynamics occur for the particular atom. T
approximate way in which we account for spontaneous em
sion in our density matrix calculation produces results wh
are negligibly different from the Monte Carlo wave functio
calculation, but are significantly more computationally ef
cient.
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B. Momentum distributions

Figures 7 and 8 show momentum distributions vers
number of kicks for the quantum double-kicked rotor, wi
spontaneous emission effects included. Figure 7~a! shows
behavior forK580 andh52%. Comparing this to Figure
5~a!, any broadening of the distributions due to the spon
neous emission is not obvious. However the ‘‘spiky’’ natu
of the pure quantum version has been significantly s
pressed. Figure 8~a! has the same kicking strength andh
55%. Here we still see little broadening but even strong
suppression of the quantum peaks. Figure 7~b!, with K
5180 andh52%, again shows similarity to the pure qua
tum case, except for some suppression of peaks and s
broadening. Figure 8~b! hasK5180 andh55%. We now
see unmistakable movement of probability into the wings
the distribution, qualitatively resembling that in the classic
system forK5180, in Fig. 4~b!, although not as strong. Fig
ure 7~c! hasK5280 andh52%. There is much more flow
of probability through the cantori than in the pure quantu
case in Fig. 5~b!, although the spikiness of the distribution
still strikingly different from the classical case in Fig. 4~b!.
For h55% in Fig. 8~c!, the distributions might be consid
ered to look more classical than quantum, although the
of transport through the boundary does not match the cla
cal case. Finally forK5400, we again see@Figs. 7~d! and
8~d!# a significant increase in the probability flow due
spontaneous emission, accompanied by distribution sha
which qualitatively resemble classical behavior except fo
somewhat smaller rate of transport.

C. Wigner functions

A convenient way to visualize the information repr
sented by the density matrix is in the form of a Wign
function. For a discrete, truncated basis we use the toro
Wigner function as defined in Ref.@20#,
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FIG. 8. Quantum-momentum distribution as
function of number of kickst with h55% ~a!
K580, ~b! 180, ~c! 280, and~d! 400.
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j 50

2N21

expS i
p jk

N D11~21! l 1 j

2 K l 1 j

2 UP̂U l 2 j

2 L ,

~10!

wherePl5(k” /2)l andXk5pk/N. This gives a Wigner func-
tion defined on a 2N32N grid. Averaging over cells of four
adjacent points we reduce the grid toN3N. This was imple-
mented inMATLAB using a fast Fourier transform algorithm

Figures 9 through 16 show a series of three-dimensio
graphs of Wigner functions. Each function represents
state of the quantum double-kicked system after 20 kic
with the same initial condition as for our other simulation
Figure 9 hasK580 and no spontaneous emission. We s
that the Wigner function is strongly contained by the clas
al
e
s,
.
e
i-

cal barriers. It has a complicated folded shape with so
sharp spikes. In Fig. 10 we introduce spontaneous emis
with rateh55%. The Wigner function is qualitatively simi
lar, but close comparison shows that it has become so
what smoother, with the contrast between peaks and trou
being reduced. In Fig. 11 we haveK5180 andh50. The
Wigner function ‘‘spills’’ over the classical barriers, a
though the total probability outside is small. We chiefly n
tice that the Wigner function is now much more complicat
in shape, varying rapidly in position and momentum. The
are significant negative peaks present. The addition of sp
taneous emission in Fig. 12 again serves to suppress
variation. It is not obvious from inspection of these grap
but the cantori localization is also destroyed to some deg
by finite h.
FIG. 9. Wigner function after 20 kicks with
K580 and no spontaneous emission.
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FIG. 10. Wigner function after 20 kicks with
K580 andh55%.
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In Fig. 13, with K5280 andh50, we again see an in
crease in the complexity of the Wigner function. At th
kicking strength, the effect of the KAM tori aroundp5
630p has become apparent. The introduction of sponta
ous emission in Fig. 14 again serves to smooth this varia
somewhat, while pushing more~quasi! probability into the
wings of the function. Finally we examineK5400. For the
situation without spontaneous emission~Fig. 15! the function
is again very complicated and noisy looking in shape. T
main visible change with increased kicking strength is
increase in the function near to thep5630p boundaries.
Introduction of spontaneous emission~Fig. 16! again sup-
presses the rapid variation to some extent.

In the limit of small k” we expect that the Wigne
pseudoprobability distribution will tend to a classical pro
ability distribution. The Wigner function itself cannot be in
terpreted as a probability distribution because it is not alw
e-
n

e
e

s

positive. We can argue that the Wigner functions of states
particularly quantum character will exhibit this nonpositivi
strongly. The normalization of our discrete Wigner functio
is

(
k,l 51

N

W̄~fk ,pl !51 ~11!

but due to nonpositivity

(
k,l 51

N

uW̄~fk ,pl !u>1. ~12!

We would like to quantify the ‘‘nonclassicality’’ of a given
state with a single positive number. A possible choice is
FIG. 11. Wigner function after 20 kicks with
K5180 andh50.
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FIG. 12. Wigner function after 20 kicks with
K5180 andh55%.
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@ uW̄~fk ,pl !u2W̄~fk ,pl !#>0. ~13!

We refer to S as ‘‘quantum strangeness.’’ In this paper,
will not analyze this quantity in any detail. However, fo
example, a mixed state consisting of two Gaussian w
packets centered at (f,p)5(0,616k” ) hasS50.1765, while
for a superposition state with equally weighted compone
of the two wave packetsS50.7647. For the initial state we
use for our simulationsS50. In general the larger the valu
of S, the more nonclassical the character of the state. Fig
17 shows this parameter calculated for the state of our
e

e

ts

re
s-

tem after 20 kicks, for several kicking strengthsK and spon-
taneous emission ratesh50,, 2 and 5 %.

D. Decoherence versus heating

An atom which undergoes spontaneous emission rece
a random momentum kick. This will obviously lead to a
increase in the width of the momentum distribution, the n
effect being some incoherent absorption of energy from
laser beams. This effect is referred to as ‘‘heating.’’ Th
however, is not the main physical mechanism behind
increased diffusion we observe due to spontaneous emis
In Figs. 18~a! and 18~b! we show the additional diffusion
throughp5610p over the pure quantum case, for seve
kicking strengths and two values of spontaneous emiss
rateh. We note that the contribution of heating to the cros
ing of this boundary will be strongest when the momentu
FIG. 13. Wigner function after 20 kicks with
K5280 andh50.
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FIG. 14. Wigner function after 20 kicks with
K5280 andh55%.
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distribution is steep nearp5610p. If the broadening effect
was due entirely to heating it should be most pronounced
the smaller kicking strengthsK where the pure quantum dis
tribution is strongly localized by the cantori, and for fixedh,
should not increase with increasingK. Figure 18~a! shows
that the additional diffusion caused by spontaneous emis
rateh52% is much larger atK5180, 280, and 400, than a
K580. Figure 18~b! shows the same trend forh55%.
There must therefore be another mechanism which incre
the diffusion rate, and which is much stronger than the he
ing mechanism forK>180. This mechanism is the destru
tion of quantum coherence, or decoherence, caused by
randomizing effect of spontaneous emission. We have
experimentally verified that heating is negligible forK
.150 @21#.
r

on

es
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he
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E. Measurement decoherence, or the anti-Zeno effect

Our model for spontaneous emission leads to decohere
which we can consider to be ‘‘environmentally induced
Kaulakys and Gontis@22# discuss the effect of projective
momentum measurements on the dynamics of the quan
d-kicked rotor. They find that if a momentum measureme
is made after every kick, then quantum localization is co
pletely destroyed, and unbounded diffusion occurs, with
same diffusion constant as in the classical system. They r
to this modification of the dynamics as ananti-Zeno effect.
Each measurement corresponds to the diagonalization o
density matrix in the momentum representation~i.e., off-
diagonal elements become zero!, or equivalently, the loss o
all information about position. This effect is formulate
FIG. 15. Wigner function after 20 kicks with
K5400 andh50.
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FIG. 16. Wigner function after 20 kicks with
K5400 andh55%.
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without appealing to a collapse of the wave-function, a
can in principle be produced experimentally.

We perform a similar simulation for our system to com
pare this form of decoherence to the spontaneous-emis
induced decoherence and to the classical motion. Comp
tionally this is very similar to the density-matri
spontaneous-emission simulations. After each double-k
coherent cycle, the density matrix is replaced by a ma
with the same diagonal entries, but all zero off-diagonal
tries. The cycle then repeats. We note that the Wigner fu
tions for states generated by this type of simulation are v
simple, being the product of a uniform position distributio
and the momentum distribution. We therefore do not sh
them, but point out that the ‘‘quantum strangeness’’ para
eterS is always zero for these functions.
d

on
ta-

k
x
-

c-
ry

w
-

F. Comparison of quantum and classical results

To compare our quantum and classical results, we ca
late the probability for a particle to cross thep5610p can-
tori, P(upu.10p,t), for classical, pure quantum, spontan
ous emission, and anti-Zeno simulations of the syste
Figure 19~a! hasK580. Classical and pure quantum sim
lations give essentially horizontal lines with some fluctu
tion, because the KAM tori present at this kicking streng
are effective barriers for both systems. The initial conditio
determine the level of this line. The quantum simulatio
with spontaneous emission show a gradual leakage and
quantum anti-Zeno simulation gives a qualitatively simi
result. This suggests that, at this kicking strength, decoh
ence breaks down the quantum cantorus localization,de-
stroying the correspondence between the quantum and c
sical systems.
FIG. 17. ‘‘Quantum strangeness’’ S

5(k,l 51
N @ uW̄(fk ,pl)u2W̄(fk ,pl)# versus kick-

ing strengthK for spontaneous emission ratesh
50, 2%, 5% as indicated in the legend.
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In Fig 19~b!, we present simulations forK5180. There is
now a clear difference between the classical and quan
simulations. In fact they appear to differ even for very sm
t, where the quantum curve initially rises more sharply th
the classical, before saturation sets in. Adding spontane
emission destroys the saturation, and fort.10 causes the
quantum system to qualitatively more closely resemble
classical. The anti-Zeno simulation, however, suggests
the limit of large decoherence is againfastertransport across
the cantori than in the classical case. We note that this si
lation does not involve heating effects, so the transport m
be due to decoherence.

Now shifting our attention toK5280, in Fig. 19~c!, we
see a large difference between classical and pure quan
behavior which appears to be bridged by the introduction
spontaneous emission. The anti-Zeno calculation n
closely corresponds to the classical picture, and we conc
that at this kicking strength decoherence does make
quantum system ‘‘more classical.’’

Finally we considerK5400 in Fig. 19~d!. The pure quan-
tum case is not as far from the classical behavior as foK
5280, but again decoherence is effective in increasing
similarity between the systems. The anti-Zeno calculat
now gives results that are almost indistinguishable from

FIG. 18. ~a! Relative effect of spontaneous emission rateh
52% for different kicking strengthsK580 ~solid!, 180 ~dotted!,
280 ~dashed!, and 400~dot-dashed!. Proportion of atoms outside
p5610p for quantum simulations withh50 andh52% sponta-
neous emission are calculated and the difference is plotted.~b!
Same as~a! but with h55%.
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classical. The close correspondence between the anti-Z
and classical simulations for this and the previous figure
be related to the fact that for these kicking strengths the
of the classical phase space flux through the cantorus
kick has become comparable to our dimensionless Plan
constantk”52.6.

Our group has previously published experimental res
for K5280 @2#. These show good agreement with the spo
taneous emission simulations, especially the Monte Ca
runs. With the elimination of some systematic experimen
errors we expect that still better agreement would
achieved.

Figure 19 demonstrates that, as we have seen, wheh
50, quantum saturation sets in byt520 over our entire
range of kicking strengths. If we examine theh50 results
we see that the quantum strangenessS is very small forK
580, but rapidly increases with increasing kicking streng
In general, we expect to seeS increase with the chaoticity o
the corresponding classical system. Classical systems
strong chaos rapidly develop phase space structure on
scales, which cannot be reproduced in a quantum sys
with finite k” , so the quantum system must begin to exhi
nonclassical features. It is interesting here that whenK
580, S is almost negligible, which seems to correspond
the fact that the classical and quantum systems are
strongly localized by the KAM tori in the classical system
As K increases, the small scale phase space structure ma
up the cantori must differ in the classical and quantum s
tems, and we see thatS rises quickly withK in this regime.
Examining the effects of introducing spontaneous emiss
we see thatS is significantly reduced even by a rateh

FIG. 19. Comparison of classical and quantum simulations w
~a! K580, ~b! 180, ~c! 280, and~d! 400. Probability of finding a
given atom outsidep5610p is plotted versus number of kickst.
Coherent quantum evolution~light solid line!, quantum evolution
with spontaneous emission ratesh52% ~dashed line! and 5%
~dash-dotted line!, respectively. Quantum simulation with anti-Zen
effect ~dotted line!. Classical simulation~heavy solid line!.
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52%. Along with the ‘‘more classical’’ diffusion seen in
Fig. 19, we can see that the Wigner function also exhib
more ‘‘classicality’’ when we introduce environmental dec
herence.

V. DISCUSSION

We have analyzed and numerically simulated the class
double-kicked rotor system and verified that it posses
KAM tori and cantori which present barriers to diffusion. W
have established the success of a simple diffusion mode
the system and used it to estimate the phase space flux
kick through a cantorus as a function of kicking streng
The double-kicked rotor is an interesting chaotic syste
which would reward further analysis. One aspect would
locating periodic trajectories of the system, especially
series of these trajectories converging to the noble KA
torus or cantorus.

The quantum double-kicked system shows strong lo
ization corresponding to classical KAM tori. The system
also localized by classicalcantori and does not show th
sharp transition shown classically. Whereas the classical
tem eventually reaches a uniform distribution in phase sp
the quantum system saturates with probability still sign
cantly confined by the classical barriers. This saturation
confirmed by a Floquet analysis of asymptotic moment
distributions. The effect is still obvious even when the size
the classical flux per kick becomes of the order of our
mensionless Planck’s constantk” . In addition to the satura
tion, we observe fluctuating peaks in the momentum dis
butions, which contrast strongly to the flat-topp
distributions seen classically. The quantum transport thro
the classical boundary more closely resembles the clas
situation as the kicking strength increases, but examina
of the Wigner functions shows that the system becomesmore
nonclassical. This is consistent with the general theory
quantum chaos which suggests that stronger chaos in
classical system accelerates the appearance of quantum
herence effects@15,20,23#.

The modern theory of environmental decoherence st
that the interaction of quantum systems with the environm
is a necessary condition for the appearance of classica
havior in real systems. The traditional semiclassical lim
which in our formulation is given byk”→0, is unsatisfactory
ev
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because the quantum break time becomes infinite only lo
rithmically, and can be surprisingly short for a real macr
scopic system. After this time arbitrary quantum superpo
tions may arise.

We have observed the effects of decoherence on
quantum system, using two models; dissipation by sponta
ous emission caused by the kicking laser beam, and the
Zeno effect. Where the classical flux per kick through t
cantorus is finite, decoherence disrupts quantum satura
and the system is qualitatively more similar to the classi
version. Examination of the Wigner function also indicat
that quantum interference effects are suppressed by the
coherence. The anti-Zeno calculations are a kind of extre
decoherence limit, and we have seen that they reproduce
classical dynamics accurately, provided thatk” is not too
large compared to the classical flux per kick. It appears
unreasonable to suppose that this correspondence cont
indefinitely.

There are numerous aspects of decoherence in this sy
which could be further investigated. The introduction
noise into the kicking of the system is expected to hav
similar effect to that of dissipation through spontaneo
emission@24#. Particular states of the system will be ‘‘resi
tant’’ to decoherence. These are expected to be the ‘‘cla
cal’’ states in the limit of strong decoherence and smallk” .
We would like to determine some of these states and qu
tify the ‘‘decoherence times’’ for other states, for compa
son with the quantum break time of the coherent system
would be interesting to quantitatively compare the anti-Ze
effect with decoherence via noise and dissipation.

Our results support the idea that the apparently class
nature of the universe arises entirely from quantum mech
ics. In the real world the unpredictable behavior of chao
systems must ultimately arise from quantum uncertainty.
further progress is made in the investigation of decoheren
there is hope that physics will develop a consistent picture
a smooth transition between quantum and classical des
tions of reality.
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